Connect with us

Informative

Are Airbus and Boeing the Only Household Names in the Aviation Industry?

Published

on

Airbus and Boeing prevail possessing a vast noteworthiness in the competitive airline manufacturing industry around the globe.

The duopoly owns the sky by composing 99% of global massive plane orders and those vast plane orders make up more than 90% of the total plane demand according to the Teal Group, an aerospace market analysis company. regional jet manufacturers only account for 7% of the airplane market value.

However, Russia and China are also an important hub for aircraft manufacturing with several well-established firms present there. But how do the jetliners compete with big giants named Airbus and Boeing?

Advertisement
Advertisements

Who are the key Russian players?

The majority of Russia’s aircraft manufacturers are grouped under the umbrella of the United Aircraft Corporation (UAC). The UAC was founded in February 2006 as part of a Presidential Decree by Vladimir Putin. It was hoped that, by grouping the companies, they would help to collectively minimize their losses while also optimizing aircraft production.

Several significant manufacturers of commercial aircraft find themselves under the UAC umbrella. Here, we shall explore some aircrafts such as Ilyushin, Sukhoi, and Tupolev.

THE ILYUSHIN II-96

Advertisements

DESIGN AND TECHNOLOGY

The Ilyushin Il-96 is a wide-body long-haul aircraft, having advanced technology developed by the Soviet Union which is the first widebody airliner. Its features are supercritical wings fitted with winglets, a glass cockpit, and a fly-by-wire control system. The basic Il-96-300 is equipped with modern Russian avionics integrating six multi-functional color LCD displays, an inertial navigation system (INS), satellite navigation systems, and a Traffic Avoidance Collision System. It allows the airplane to be operated with two crew members. The avionics correspond to modern requirements on international routes in Europe and North America (RNP-1) and as well as allow navigation and landing under ICAO CAT III/A weather minima. The Il-96 is offered in three main variants: the Il-96-300, Il-96M/T, and Il-96-400.

The Il-96M is similar in capacity (307 vs 305) and length (64.7 m vs 63.7 m) to the Boeing 777-200. Its 12,800 km (6,907 NM) range outranks the 777-200 in terms of range, although not in the case of the ER (13,080 km / 7,065 NM) and LR (14,075 km / 7,600 NM) versions. 

SUKHOI

The JSCSukhoi Company was a major Soviet and now a Russian aircraft manufacturer, headquartered in Begovoy District, Northern Administrative Okrug,  Moscow. It designs both civilian and military aircraft. (SU 30, illustrated below)

Advertisement
Advertisements

TUPOLEV

Tupolev’s present flagship is its single-aisle Tu-204 design. The company was previously known for developing the supersonic Tu-144, which briefly rivaled the Concorde. The Tu-204, which entered service in 1996, is similar to the Airbus A321 and Boeing 757.

DESIGN AND TECHNOLOGY

The Tu-204 is part of a new generation of Russian aircraft, including other recent developments such as the Ilyushin II-96. The Tu-204 is technologically equipped with fly-by-wire control systems, a glass cockpit, and supercritical wings with winglets, and is available with Russian or foreign avionics. The wings and tails are relatively resistant to ice formation, where anti-icing systems are not equipped. Among today’s airliners, the Tu-204 is the only one that does not require wing anti-icing systems. During the test flight, safety has been confirmed without the anti-icing system on the bearing surfaces and the aircraft has been certified by both Russian and European aviation authorities.

ROAD TO DEVELOPMENT

There are also aircraft currently in development in Russia that may prove to provide greater challenges to Airbus and Boeing in markets they have previously dominated. For example, IRKUT hopes to rival the A320 NEO and B737 MAX families with its MC-21.

Advertisements

CHINESE COMAC C919

The Comac C919 is a narrow-body airliner developed by Chinese aircraft manufacturer COMAC. The development program was launched in 2008. Production of the prototype began in December 2011, with the first prototype being ready on 2 November 2015 and its maiden flight on 5 May 2017. The first commercial deliveries of these aircraft are expected in 2022 to China Eastern Airlines.

It is intended to compete primarily with the Boeing 737 MAX and Airbus A320 NEO.

Russia has also teamed up with China in an attempt to produce an aircraft that will penetrate the long-haul market. Known as the CRAIC CR929, this project will see China’s COMAC and the UAC join forces in an attempt to challenge the likes of the A330 NEO and Boeing 787.

Advertisement

Advertisements

SOURCE(s) : https://simpleflying.com/russian-jetliners-vs-airbus-and-boeing/

https://www.cnbc.com/2019/01/25/why-the-airbus-boeing-companies-dominate-99percent-of-the-large-plane-market.html

https://en.wikipedia.org/wiki/Ilyushin_Il-96

https://en.wikipedia.org/wiki/Sukhoi

Advertisement

https://en.wikipedia.org/wiki/Tupolev_Tu-204

https://en.wikipedia.org/wiki/Comac_C919

COVER PIC COURTESY: Uploaded by 10SlideInfo, Jun 15, 2020

Advertisement

Informative

Boeing Plane Numbering: Why Do Boeing Plane Models Start and End With the Number 7

Published

on

CJMoeser

Have you ever wondered why Boeing plane models follow a unique numbering convention? From the iconic 707 to the modern 787 Dreamliner, these aircraft names start and end with the number 7. In this article, we’ll delve into the fascinating world of Boeing’s plane numbering system, exploring the reasons behind this distinctive pattern and uncovering the possibilities for future model designations. Join us as we unravel the mystery behind why Boeing plane models start and end with the number 7.

The History of Boeing Plane Numbering

Boeing plane numbering
Photo by Nick Dean

Boeing’s commercial aircraft have a long history of numerical designations starting and ending with the number seven. It all began in the 1950s with the iconic Boeing 707, and since then, Boeing has continued this tradition with its popular jetliners. Let’s delve into the intriguing history of Boeing plane numbering and uncover the reasons behind this unique convention.

The Theories Behind Boeing’s Numbering System

Over the years, several theories have emerged to explain the reasoning behind Boeing’s numbering system. One theory suggests that the 707 was Boeing’s seventh aircraft series. However, this is not accurate as Boeing’s first modern passenger jetliner was actually the 367-80, a prototype for the 707.

Boeing plane numbering
Via QANTAS FOUNDERS MUSEUM – KONICA MINOLTA DIGITAL CAMERA

Another theory suggests that the number in Boeing’s aircraft names represents their passenger capacity. This idea draws inspiration from Airbus, which named its A300 based on its approximate capacity. However, this theory falls short when it comes to the Boeing 707, as even its largest variant only accommodated 219 passengers.

Advertisement

The Real Reason for Boeing’s Numbering System

The true reason behind Boeing’s numbering system lies in its practicality and ease of reference. The numbers assigned to each aircraft model help engineers and industry professionals differentiate between the various products in Boeing’s extensive portfolio. Here’s a breakdown of Boeing’s numbering system:

  • 100: Used for earlier models and the first biplanes constructed by Boeing.
  • 200: Designated for early single-wing designs that deviated from the prevailing biplane trend.
  • 300 and 400: Assigned to commercial propeller-driven aircraft.
  • 500: Reserved for turbo-engined aircraft.
  • 600: Designated for missiles and rocket-powered devices.
  • 700: Allocated to jet-powered commercial aircraft.
  • 800: Currently unused.
  • 900: Used for a unique project—a turbojet hydrofoil boat designated as the 929.
Boeing 929
Photo by Daniel Case

The consistent use of the number 7 in the 700 series has played a crucial role in establishing brand recognition and a strong association with Boeing. It has become an integral part of the company’s identity, signifying innovation, reliability, and excellence in the aviation industry.

Emirates Boeing 777 MODEL from Air Models, Buy now!

The Significance of Ending 700 Series Aircraft with the Number 7

An intriguing aspect of Boeing’s numbering convention is the practice of ending 700 series aircraft with the number seven. This decision has both marketing and linguistic considerations. From a marketing perspective, the symmetry of the “7×7” combination is visually appealing and memorable. It also rolls off the tongue easily and aids in brand recognition. Additionally, the 700 series designations have become synonymous with some of Boeing’s most iconic and legendary aircraft, such as the legendary Boeing 747.

Future Possibilities for Boeing Plane Numbering

Boeing plane numbering
Photo by BaqirKPAE

Considering the extensive range of jetliner families Boeing has developed over the years, one may wonder what the future holds for their numbering convention. With some series already discontinued and others continuing to evolve, the available numbers are becoming limited. The 797 has long been rumored to be a potential new middle-market aircraft, but beyond that, Boeing may need to explore alternative options.

Read more about the Boeing 797: Boeing B797 in the Making?

In the future, Boeing might consider adding a fourth number to the designation or moving beyond the number 7 at the end to accommodate new models. Alternatively, they could introduce a new series altogether, such as the presently unused 800 series. Whatever the future holds, Boeing’s commitment to innovation and progress in the aviation industry will undoubtedly remain unchanged.

Advertisement
Boeing plane numbering
Photo by Shoval Zonnis

You might be also interested in: The Differences Between the Boeing 777 Variants

The Boeing plane numbering convention has fascinated aviation enthusiasts for decades. While theories have emerged to explain the origin and significance of these numerical designations, the true reason lies in practicality and ease of reference. Ending 700 series aircraft with the number seven adds a touch of symmetry and allure to Boeing’s product lineup. As we look to the future, it remains to be seen how Boeing will navigate the evolving landscape of aircraft numbering and continue to captivate aviation enthusiasts worldwide.

The story behind Boeing’s numbering convention is a captivating one, leaving us with intriguing possibilities for the future. What are your thoughts on this unique naming system? Do you believe Boeing should continue with the tradition of starting and ending with the number 7, or would you prefer to see a different approach? Join the conversation and share your insights in the comments section below!

SUBSCRIBE TO US!

Join others in a quick recap of AVIATION we talk weekly fresh to your email!

Advertisement

We don’t spam! Read our privacy policy for more info.

Advertisement
Continue Reading

Informative

Crucial Factors Affecting Aircraft Takeoff Distance and What Pilots Can Do About It

Published

on

TommyNG

The adrenaline rush that accompanies the surge of power felt during an airplane’s takeoff is a captivating experience. However, the complexities of aircraft takeoff extend far beyond this initial thrill, deeply rooted in intricate maneuvering and meticulous calculations. This process, primarily defined in terms of Takeoff Distance (TOD), involves two main segments – the ground roll and the airborne distance necessary to reach the screen height of 35 ft. Multiple factors interplay to influence this takeoff distance. Let’s delve into factors affecting takeoff distance.

Atmospheric Influence on Takeoff Performance

Factors affecting takeoff distance
Photo via pilotinstitute

The performance of an aircraft is tightly knitted with atmospheric conditions, specifically the ambient temperature. As temperatures soar, the aircraft’s performance correspondingly takes a dip. This phenomenon is attributed to the rise in density altitude. An elevated density altitude impairs both the engine performance and the aerodynamics of the aircraft, necessitating a deeper understanding of the impact of density altitude on aircraft operations.

Another atmospheric factor playing a crucial role in aircraft takeoff is the prevailing wind conditions. Planes predominantly take off into the wind, as a headwind contributes to reducing the takeoff distance, whereas a tailwind tends to elongate it. This is due to the interaction between Indicated Air Speed (IAS), True Air Speed (TAS), and ground speed. If the wind direction and speed are accurately factored into the calculations, pilots can optimize their ground speed requirements, significantly impacting the takeoff distance.

Weight and Its Impact on Aircraft Takeoff

Factors affecting takeoff distance
Photo by Mario De Pian

Weight is another factor that plays a major role in influencing takeoff distance. An increase in the weight of the aircraft essentially means an increase in inertia, translating into the requirement of greater acceleration and a consequently longer runway. A weightier aircraft also imposes a higher load on the ground, escalating the wheel drag and friction. This heightened friction, combined with the need to attain a certain speed for lift-off, necessitates a longer runway roll for heavier aircraft, thereby increasing the takeoff distance.

Runway Conditions and their Role in Takeoff

Factors affecting takeoff distance
Photo by Philip Nyman

The runway, where the action unfolds, also contributes to the intricacies of aircraft takeoff. The characteristics of the runway surface, such as the presence of water, snow, or slush, can increase the friction experienced during takeoff, affecting the required distance. Similarly, the slope of the runway also plays a part in influencing the takeoff roll. An uphill runway works against the acceleration of the aircraft, while a downslope assists the acceleration, reducing the takeoff distance.

Mitigating Factors: Practical Strategies for Optimal Takeoff

Photo by Nicholas Young

Pilots employ a range of strategies to tackle these influencing factors and ensure a smooth takeoff. One such strategy is the modification of the aircraft’s configuration, such as the lowering of flaps, which can increase lift and reduce the required takeoff speed. However, a higher flap setting also poses its own challenges, emphasizing the need for a well-calculated balance.

Ignoring these factors can lead to a decrement in performance, potentially impacting safety. Fortunately, aircraft manufacturers equip pilots with critical information, such as Weight, Altitude, and Temperature (WAT) charts, to make informed decisions for safe takeoff operations.

Advertisement
Factors affecting takeoff distance
Photo by R.Bexten

Unraveling the complexities of aircraft takeoff and acknowledging the factors that influence it form the backbone of efficient aircraft operation. Such understanding is critical to maintaining the safety and efficiency of flights, particularly in the realm of general aviation, where stringent training and standardization may not always be in place.

READ ALSO: Cleared for takeoff | The take off procedure explained

We’ve discussed the complexities of aircraft takeoff and the factors influencing it. Even as passengers, these aspects shape our flying experience. What are your thoughts on this intricate process? Have you ever noticed these factors at play during your travels? Share your insights or any questions you might have in the comments section below.


SUBSCRIBE TO US!

Join others in a quick recap of AVIATION we talk weekly fresh to your email!

Advertisement

We don’t spam! Read our privacy policy for more info.

Advertisement
Continue Reading

Informative

Maximizing Jet Engine Efficiency: The Benefits of Rolls-Royce’s TotalCare Program

Published

on

TotalCare
M3 Aviation Group LLC

Rolls-Royce provides a comprehensive engine management service, TotalCare program, that offers multiple engine maintenance plans to its customers. Jet engines are expensive and critical assets, and to maintain their longevity, operators often seek OEMs and third-party facilities for engine maintenance. The TotalCare program includes predictive maintenance planning, work scope management, and off-wing repair and overhaul activities at various OEM and partner locations. Rolls-Royce’s main goal is to manage engines throughout their lifecycle and ensure maximum flying availability for its customers.

Maximizing Time-on-Wing and Shop Visit Cost Risk Transfer

Rolls-Royce’s TotalCare program offers customers a choice in managing engine maintenance by transferring both time-on-wing and shop visit cost risks back to the company. Rolls-Royce aligns its TotalCare maintenance business model with its customers’ operational model to provide maximum time-on-wing for the engines. The company enhances its internal capability to repair and recycle engine components, allowing for on-wing inspection and repair of several internal and external parts without removing the engine. This approach decreases the need for new and spare parts, and accelerates the maintenance process.

Image by: Rolls-Royce

Recycling and Remanufacturing of Engines

According to Rolls-Royce, their TotalCare program can recover and recycle up to 95% of a used engine. Almost half of the recovered materials are of high quality and can be safely remanufactured to create new aerospace components. This approach minimizes the need for OEMs to purchase raw materials, making engine maintenance more sustainable and cost-effective.

TotalCare Engine Management Plans

Rolls-Royce offers three engine management plans through its TotalCare program: TotalCare Life, TotalCare Term, and TotalCare Flex.

Advertisement

TotalCare Life

Under the TotalCare program, customers pay an agreed-upon amount per engine flight hour (EFH) during the engine’s operation, similar to the power-by-the-hour contract offered by many OEMs. Rolls-Royce mandates a minimum term for this plan, and the exact dollar amount per EFH varies based on the customer and usage. If the aircraft and engine are sold to another operator midway between overhauls, the unused maintenance credits can be transferred to the new operator if they also enroll in the TotalCare program.

TotalCare Term

As part of the TotalCare program, the TotalCare Term plan charges an agreed-upon rate per engine flight hour (EFH) to cover expected shop visits for the duration of the agreement. However, if the term ends midway between shop visits, the operator will not have contributed towards the engine life used since the last shop visit. This plan offers a lower rate per EFH, but it limits the services provided within a specific term.

TotalCare Flex

The TotalCare Flex plan is usually used for owned engines that are approaching their retirement age. Under this plan, OEMs offer a complete overhaul to maximize time-on-wing, a partial overhaul that takes the engine to its retirement date, or an engine swap.

Advertisement
Image by: Rolls-Royce

Rolls-Royce’s TotalCare program provides a comprehensive engine management service that ensures maximum time-on-wing and cost-effective maintenance for customers. The program transfers both time-on-wing and shop visit cost risks back to Rolls-Royce, enabling customers to concentrate on their core business while Rolls-Royce assumes responsibility for engine maintenance. The program offers three engine management plans, each customized to meet the specific needs of its customers. Through TotalCare, Rolls-Royce aims to encourage more customers to adopt long-term service agreements and reduce reliance on traditional third-party Maintenance Repair and Overhaul (MRO) services.

Also, you might be interested in reading: Jet Engines: How They Work and Power Modern Aviation?

Sources

Continue Reading

Trending

%d bloggers like this: