Connect with us

Informative

How Do Fighter Jets Land On Aircraft Carriers?

Published

on

If you’ve ever attempted to land a plane before, perhaps in a simulator or maybe even in real life, you know that it takes a significant amount of runway length to bring a plane to a complete stop. If an entire runway of such a great length is required for an aircraft to land, then how do fighter jets land on aircraft carriers where the runway length is just a mere fraction of the length of actual runways at airports? In this article, we will explore how fighter jets can go from high speeds to stationary in just a matter of seconds.


Advertisements

To begin with, let’s put into perspective how short the runway on an aircraft carrier actually is. Typical runways at airports range from 8000 feet to 13000 feet in length, but an aircraft carrier’s runway is only around 500 feet long. This means that airport runways are 13 to 26 times as long as aircraft carrier runways. 

Credit: Wikipedia
Advertisements

Method

With a runway this short, the pilots of these aircraft carrier fighter jets must follow a strict procedure to ensure their safety and the safety of those on the deck of the carrier:

  • Before being cleared to land, fighter jet pilots must circle around in an oval pattern somewhere near the aircraft carrier. The air traffic controller on the carrier will then decide which jets are qualified to land first based on their fuel levels. The jets will exit the pattern one by one and wait their turn to land after the runway has been vacated by the previous pilot.
  • After an aircraft is cleared to land on the carrier, the pilot will lower a device known as a tailhook on the end of the plane. This device is exclusive to carrier-based aircraft and consists of a metal pole with a hook on the end.
Advertisements
Credit: Aviation Stack Exchange
  • As a fighter jet pilot approaches the aircraft carrier, a mechanism known as the Fresnel Lens Optical Landing System activates and guides the pilot on a safe path down to the carrier runway. The Fresnel Lens Optical Landing System shoots out beams of light that indicate to the pilot if he or she is flying too low or too high. The pilot will see a beam of amber light in relation to green lights. If this amber light is above the green lights, the pilot is approaching too high; if the amber light is below the green lights, the pilot is approaching too low. 
Credit: Wikipedia
Advertisements
  • In the last moments before touchdown, the pilot will align the fighter jet to catch one of the arresting wires on the runway of the carrier using its tailhook. These arresting wires are made of several interwoven high-tensile steel wires and are attached to a hydraulic system below the deck of the carrier. There are usually 3-4 parallel arresting wires on the deck of the carrier, each spaced around 50 feet apart. Pilots are instructed to aim for the 3rd wire, although any of the other ones work. As the fighter jet hits the runway and pulls on one of the wires, it will prompt the lower hydraulic systems to absorb all of the energy from the speed of the plane and bring it to a stop. These wires, along with the hydraulic systems, are highly effective in absorbing the immense amount of energy when a fighter jet lands on the carrier and are able to stop aircraft in a matter of seconds. 
Credit: Wikipedia
  • After safely on the runway, the deck crew on the carrier will move the plane to the side of the carrier and secure it down to the deck. 
Advertisements

Safety Procedures

The process of landing an aircraft safely on an aircraft carrier is never guaranteed to be completely flawless. There are always plenty of risks associated with performing such a task. One of the practices that pilots are instructed to do when landing on an aircraft carrier is to push the aircraft to full throttle as soon as it touches down on the runway. This is to ensure that if the pilot misses the arresting wire, they will have enough speed to take off again and try again. Powering the engines to full power when landing won’t be an issue for the arresting wires since the hydraulics are capable enough to overcome this force. 

Advertisements

Pushing an aircraft to full throttle right in the vicinity of ground personnel is undoubtedly a dangerous move. As a result, the deck crew assisting with these landings are equipped with a variety of safety equipment, such as self-inflating life jackets in case they are blown into the water by engine blasts. 

Advertisement

In the scenario where an aircraft attempting to land on the carrier has had a malfunction or a failure of some sort, the deck crew will raise a crash barricade made of sturdy wires to try to stop the aircraft. The deck crew will also be waiting with a multitude of fire-extinguishing tools, just like at a normal airport, if this happens. 

Credit: Picryl
Advertisements

 


Landing on an aircraft carrier is undeniably a risky and perilous task, but with these procedures in place, the chance of failure or death can be significantly lowered. However, even with these careful steps, landing on an aircraft carrier is not guaranteed to be a safe operation, and remains to only be performed by the best of pilots.


Advertisements

Source:

Advertisement

https://science.howstuffworks.com/aircraft-carrier4.htm

https://interestingengineering.com/innovation/how-planes-land-on-aircraft-carriers-short-runways

Cover Image: Sandboxx

Advertisement
Advertisements
Advertisements
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Informative

Boeing Plane Numbering: Why Do Boeing Plane Models Start and End With the Number 7

Published

on

CJMoeser

Have you ever wondered why Boeing plane models follow a unique numbering convention? From the iconic 707 to the modern 787 Dreamliner, these aircraft names start and end with the number 7. In this article, we’ll delve into the fascinating world of Boeing’s plane numbering system, exploring the reasons behind this distinctive pattern and uncovering the possibilities for future model designations. Join us as we unravel the mystery behind why Boeing plane models start and end with the number 7.

The History of Boeing Plane Numbering

Boeing plane numbering
Photo by Nick Dean

Boeing’s commercial aircraft have a long history of numerical designations starting and ending with the number seven. It all began in the 1950s with the iconic Boeing 707, and since then, Boeing has continued this tradition with its popular jetliners. Let’s delve into the intriguing history of Boeing plane numbering and uncover the reasons behind this unique convention.

The Theories Behind Boeing’s Numbering System

Over the years, several theories have emerged to explain the reasoning behind Boeing’s numbering system. One theory suggests that the 707 was Boeing’s seventh aircraft series. However, this is not accurate as Boeing’s first modern passenger jetliner was actually the 367-80, a prototype for the 707.

Boeing plane numbering
Via QANTAS FOUNDERS MUSEUM – KONICA MINOLTA DIGITAL CAMERA

Another theory suggests that the number in Boeing’s aircraft names represents their passenger capacity. This idea draws inspiration from Airbus, which named its A300 based on its approximate capacity. However, this theory falls short when it comes to the Boeing 707, as even its largest variant only accommodated 219 passengers.

Advertisement

The Real Reason for Boeing’s Numbering System

The true reason behind Boeing’s numbering system lies in its practicality and ease of reference. The numbers assigned to each aircraft model help engineers and industry professionals differentiate between the various products in Boeing’s extensive portfolio. Here’s a breakdown of Boeing’s numbering system:

  • 100: Used for earlier models and the first biplanes constructed by Boeing.
  • 200: Designated for early single-wing designs that deviated from the prevailing biplane trend.
  • 300 and 400: Assigned to commercial propeller-driven aircraft.
  • 500: Reserved for turbo-engined aircraft.
  • 600: Designated for missiles and rocket-powered devices.
  • 700: Allocated to jet-powered commercial aircraft.
  • 800: Currently unused.
  • 900: Used for a unique project—a turbojet hydrofoil boat designated as the 929.
Boeing 929
Photo by Daniel Case

The consistent use of the number 7 in the 700 series has played a crucial role in establishing brand recognition and a strong association with Boeing. It has become an integral part of the company’s identity, signifying innovation, reliability, and excellence in the aviation industry.

Emirates Boeing 777 MODEL from Air Models, Buy now!

The Significance of Ending 700 Series Aircraft with the Number 7

An intriguing aspect of Boeing’s numbering convention is the practice of ending 700 series aircraft with the number seven. This decision has both marketing and linguistic considerations. From a marketing perspective, the symmetry of the “7×7” combination is visually appealing and memorable. It also rolls off the tongue easily and aids in brand recognition. Additionally, the 700 series designations have become synonymous with some of Boeing’s most iconic and legendary aircraft, such as the legendary Boeing 747.

Future Possibilities for Boeing Plane Numbering

Boeing plane numbering
Photo by BaqirKPAE

Considering the extensive range of jetliner families Boeing has developed over the years, one may wonder what the future holds for their numbering convention. With some series already discontinued and others continuing to evolve, the available numbers are becoming limited. The 797 has long been rumored to be a potential new middle-market aircraft, but beyond that, Boeing may need to explore alternative options.

Read more about the Boeing 797: Boeing B797 in the Making?

In the future, Boeing might consider adding a fourth number to the designation or moving beyond the number 7 at the end to accommodate new models. Alternatively, they could introduce a new series altogether, such as the presently unused 800 series. Whatever the future holds, Boeing’s commitment to innovation and progress in the aviation industry will undoubtedly remain unchanged.

Advertisement
Boeing plane numbering
Photo by Shoval Zonnis

You might be also interested in: The Differences Between the Boeing 777 Variants

The Boeing plane numbering convention has fascinated aviation enthusiasts for decades. While theories have emerged to explain the origin and significance of these numerical designations, the true reason lies in practicality and ease of reference. Ending 700 series aircraft with the number seven adds a touch of symmetry and allure to Boeing’s product lineup. As we look to the future, it remains to be seen how Boeing will navigate the evolving landscape of aircraft numbering and continue to captivate aviation enthusiasts worldwide.

The story behind Boeing’s numbering convention is a captivating one, leaving us with intriguing possibilities for the future. What are your thoughts on this unique naming system? Do you believe Boeing should continue with the tradition of starting and ending with the number 7, or would you prefer to see a different approach? Join the conversation and share your insights in the comments section below!

SUBSCRIBE TO US!

Join others in a quick recap of AVIATION we talk weekly fresh to your email!

Advertisement

We don’t spam! Read our privacy policy for more info.

Advertisement
Continue Reading

Informative

Crucial Factors Affecting Aircraft Takeoff Distance and What Pilots Can Do About It

Published

on

TommyNG

The adrenaline rush that accompanies the surge of power felt during an airplane’s takeoff is a captivating experience. However, the complexities of aircraft takeoff extend far beyond this initial thrill, deeply rooted in intricate maneuvering and meticulous calculations. This process, primarily defined in terms of Takeoff Distance (TOD), involves two main segments – the ground roll and the airborne distance necessary to reach the screen height of 35 ft. Multiple factors interplay to influence this takeoff distance. Let’s delve into factors affecting takeoff distance.

Atmospheric Influence on Takeoff Performance

Factors affecting takeoff distance
Photo via pilotinstitute

The performance of an aircraft is tightly knitted with atmospheric conditions, specifically the ambient temperature. As temperatures soar, the aircraft’s performance correspondingly takes a dip. This phenomenon is attributed to the rise in density altitude. An elevated density altitude impairs both the engine performance and the aerodynamics of the aircraft, necessitating a deeper understanding of the impact of density altitude on aircraft operations.

Another atmospheric factor playing a crucial role in aircraft takeoff is the prevailing wind conditions. Planes predominantly take off into the wind, as a headwind contributes to reducing the takeoff distance, whereas a tailwind tends to elongate it. This is due to the interaction between Indicated Air Speed (IAS), True Air Speed (TAS), and ground speed. If the wind direction and speed are accurately factored into the calculations, pilots can optimize their ground speed requirements, significantly impacting the takeoff distance.

Weight and Its Impact on Aircraft Takeoff

Factors affecting takeoff distance
Photo by Mario De Pian

Weight is another factor that plays a major role in influencing takeoff distance. An increase in the weight of the aircraft essentially means an increase in inertia, translating into the requirement of greater acceleration and a consequently longer runway. A weightier aircraft also imposes a higher load on the ground, escalating the wheel drag and friction. This heightened friction, combined with the need to attain a certain speed for lift-off, necessitates a longer runway roll for heavier aircraft, thereby increasing the takeoff distance.

Runway Conditions and their Role in Takeoff

Factors affecting takeoff distance
Photo by Philip Nyman

The runway, where the action unfolds, also contributes to the intricacies of aircraft takeoff. The characteristics of the runway surface, such as the presence of water, snow, or slush, can increase the friction experienced during takeoff, affecting the required distance. Similarly, the slope of the runway also plays a part in influencing the takeoff roll. An uphill runway works against the acceleration of the aircraft, while a downslope assists the acceleration, reducing the takeoff distance.

Mitigating Factors: Practical Strategies for Optimal Takeoff

Photo by Nicholas Young

Pilots employ a range of strategies to tackle these influencing factors and ensure a smooth takeoff. One such strategy is the modification of the aircraft’s configuration, such as the lowering of flaps, which can increase lift and reduce the required takeoff speed. However, a higher flap setting also poses its own challenges, emphasizing the need for a well-calculated balance.

Ignoring these factors can lead to a decrement in performance, potentially impacting safety. Fortunately, aircraft manufacturers equip pilots with critical information, such as Weight, Altitude, and Temperature (WAT) charts, to make informed decisions for safe takeoff operations.

Advertisement
Factors affecting takeoff distance
Photo by R.Bexten

Unraveling the complexities of aircraft takeoff and acknowledging the factors that influence it form the backbone of efficient aircraft operation. Such understanding is critical to maintaining the safety and efficiency of flights, particularly in the realm of general aviation, where stringent training and standardization may not always be in place.

READ ALSO: Cleared for takeoff | The take off procedure explained

We’ve discussed the complexities of aircraft takeoff and the factors influencing it. Even as passengers, these aspects shape our flying experience. What are your thoughts on this intricate process? Have you ever noticed these factors at play during your travels? Share your insights or any questions you might have in the comments section below.


SUBSCRIBE TO US!

Join others in a quick recap of AVIATION we talk weekly fresh to your email!

Advertisement

We don’t spam! Read our privacy policy for more info.

Advertisement
Continue Reading

Informative

Maximizing Jet Engine Efficiency: The Benefits of Rolls-Royce’s TotalCare Program

Published

on

TotalCare
M3 Aviation Group LLC

Rolls-Royce provides a comprehensive engine management service, TotalCare program, that offers multiple engine maintenance plans to its customers. Jet engines are expensive and critical assets, and to maintain their longevity, operators often seek OEMs and third-party facilities for engine maintenance. The TotalCare program includes predictive maintenance planning, work scope management, and off-wing repair and overhaul activities at various OEM and partner locations. Rolls-Royce’s main goal is to manage engines throughout their lifecycle and ensure maximum flying availability for its customers.

Maximizing Time-on-Wing and Shop Visit Cost Risk Transfer

Rolls-Royce’s TotalCare program offers customers a choice in managing engine maintenance by transferring both time-on-wing and shop visit cost risks back to the company. Rolls-Royce aligns its TotalCare maintenance business model with its customers’ operational model to provide maximum time-on-wing for the engines. The company enhances its internal capability to repair and recycle engine components, allowing for on-wing inspection and repair of several internal and external parts without removing the engine. This approach decreases the need for new and spare parts, and accelerates the maintenance process.

Image by: Rolls-Royce

Recycling and Remanufacturing of Engines

According to Rolls-Royce, their TotalCare program can recover and recycle up to 95% of a used engine. Almost half of the recovered materials are of high quality and can be safely remanufactured to create new aerospace components. This approach minimizes the need for OEMs to purchase raw materials, making engine maintenance more sustainable and cost-effective.

TotalCare Engine Management Plans

Rolls-Royce offers three engine management plans through its TotalCare program: TotalCare Life, TotalCare Term, and TotalCare Flex.

Advertisement

TotalCare Life

Under the TotalCare program, customers pay an agreed-upon amount per engine flight hour (EFH) during the engine’s operation, similar to the power-by-the-hour contract offered by many OEMs. Rolls-Royce mandates a minimum term for this plan, and the exact dollar amount per EFH varies based on the customer and usage. If the aircraft and engine are sold to another operator midway between overhauls, the unused maintenance credits can be transferred to the new operator if they also enroll in the TotalCare program.

TotalCare Term

As part of the TotalCare program, the TotalCare Term plan charges an agreed-upon rate per engine flight hour (EFH) to cover expected shop visits for the duration of the agreement. However, if the term ends midway between shop visits, the operator will not have contributed towards the engine life used since the last shop visit. This plan offers a lower rate per EFH, but it limits the services provided within a specific term.

TotalCare Flex

The TotalCare Flex plan is usually used for owned engines that are approaching their retirement age. Under this plan, OEMs offer a complete overhaul to maximize time-on-wing, a partial overhaul that takes the engine to its retirement date, or an engine swap.

Advertisement
Image by: Rolls-Royce

Rolls-Royce’s TotalCare program provides a comprehensive engine management service that ensures maximum time-on-wing and cost-effective maintenance for customers. The program transfers both time-on-wing and shop visit cost risks back to Rolls-Royce, enabling customers to concentrate on their core business while Rolls-Royce assumes responsibility for engine maintenance. The program offers three engine management plans, each customized to meet the specific needs of its customers. Through TotalCare, Rolls-Royce aims to encourage more customers to adopt long-term service agreements and reduce reliance on traditional third-party Maintenance Repair and Overhaul (MRO) services.

Also, you might be interested in reading: Jet Engines: How They Work and Power Modern Aviation?

Sources

Continue Reading

Trending

%d bloggers like this: